
www.manaraa.com

Journal of Arti�ial Intelligene Researh 11 (1999) 391-427 Submitted 1/99; published 11/99
Markov Loalization for Mobile Robotsin Dynami EnvironmentsDieter Fox dfox�s.mu.eduComputer Siene Department and Robotis InstituteCarnegie Mellon UniversityPittsburgh, PA 15213-3891Wolfram Burgard burgard�informatik.uni-freiburg.deDepartment of Computer SieneUniversity of FreiburgD-79110 Freiburg, GermanySebastian Thrun thrun�s.mu.eduComputer Siene Department and Robotis InstituteCarnegie Mellon UniversityPittsburgh, PA 15213-3891 AbstratLoalization, that is the estimation of a robot's loation from sensor data, is a funda-mental problem in mobile robotis. This papers presents a version of Markov loalizationwhih provides aurate position estimates and whih is tailored towards dynami environ-ments. The key idea of Markov loalization is to maintain a probability density over thespae of all loations of a robot in its environment. Our approah represents this spaemetrially, using a �ne-grained grid to approximate densities. It is able to globally loalizethe robot from srath and to reover from loalization failures. It is robust to approxi-mate models of the environment (suh as oupany grid maps) and noisy sensors (suhas ultrasound sensors). Our approah also inludes a �ltering tehnique whih allows amobile robot to reliably estimate its position even in densely populated environments inwhih rowds of people blok the robot's sensors for extended periods of time. The methoddesribed here has been implemented and tested in several real-world appliations of mobilerobots, inluding the deployments of two mobile robots as interative museum tour-guides.1. IntrodutionRobot loalization has been reognized as one of the most fundamental problems in mobilerobotis (Cox & Wilfong, 1990; Borenstein et al., 1996). The aim of loalization is toestimate the postition of a robot in its environment, given a map of the environment andsensor data. Most suessful mobile robot systems to date utilize loalization, as knowledgeof the robot's position is essential for a broad range of mobile robot tasks.Loalization|often referred to as position estimation or position ontrol|is urrently ahighly ative �eld of researh, as a reent book by Borenstein and olleagues (1996) suggests.The loalization tehniques developed so far an be distinguished aording to the type of1999 AI Aess Foundation and Morgan Kaufmann Publishers. All rights reserved.
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Fox, Burgard & Thrunproblem they attak. Traking or loal tehniques aim at ompensating odometri errorsourring during robot navigation. They require, however, that the initial loation of therobot is (approximately) known and they typially annot reover if they lose trak of therobot's position (within ertain bounds). Another family of approahes is alled globaltehniques. These are designed to estimate the position of the robot even under globalunertainty. Tehniques of this type solve the so-alled wake-up robot problem, in that theyan loalize a robot without any prior knowledge about its position. They furthermore anhandle the kidnapped robot problem, in whih a robot is arried to an arbitrary loationduring it's operation1. Global loalization tehniques are more powerful than loal ones.They typially an ope with situations in whih the robot is likely to experiene seriouspositioning errors.In this paper we present a metri variant of Markov loalization, a tehnique to globallyestimate the position of a robot in its environment. Markov loalization uses a probabilistiframework to maintain a position probability density over the whole set of possible robotposes. Suh a density an have arbitrary forms representing various kinds of informationabout the robot's position. For example, the robot an start with a uniform distributionrepresenting that it is ompletely unertain about its position. It furthermore an ontainmultiple modes in the ase of ambiguous situations. In the usual ase, in whih the robotis highly ertain about its position, it onsists of a unimodal distribution entered aroundthe true position of the robot. Based on the probabilisti nature of the approah and therepresentation, Markov loalization an globally estimate the position of the robot, it andeal with ambiguous situations, and it an re-loalize the robot in the ase of loalizationfailures. These properties are basi preonditions for truly autonomous robots designed tooperate over long periods of time.Our method uses a �ne-grained and metri disretization of the state spae. This ap-proah has several advantages over previous ones, whih predominately used Gaussians oroarse-grained, topologial representations for approximating a robot's belief. First, it pro-vides more aurate position estimates, whih are required in many mobile robot tasks (e.g.,tasks involving mobile manipulation). Seond, it an inorporate raw sensory input suh asa single beam of an ultrasound sensor. Most previous approahes to Markov loalization, inontrast, sreen sensor data for the presene or absene of landmarks, and they are proneto fail if the environment does not align well with the underlying assumptions (e.g., if itdoes not ontain any of the required landmarks).Most importantly, however, previous Markov loalization tehniques assumed that theenvironment is stati. Therefore, they typially fail in highly dynami environments, suhas publi plaes where rowds of people may over the robot's sensors for extended periodsof time. To deal with suh situations, our method applies a �ltering tehnique that, inessene, updates the position probability density using only those measurements whih arewith high likelihood produed by known objets ontained in the map. As a result, itpermits aurate loalization even in densely rowded, non-stati environments.Our Markov loalization approah has been implemented and evaluated in various envi-ronments, using di�erent kinds of robots and sensor modalities. Among these appliationsare the deployments of the mobile robots Rhino and Minerva (see Figure 1) as intera-1. Please note that the wake-up problem is the speial ase of the kidnapped robot problem in whih therobot is told that it has been arried away. 392
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Markov Loalization for Mobile Robots in Dynami Environments

(a) (b)Fig. 1. The mobile robots Rhino (a) and Minerva (b) ating as interative museum tour-guides.tive museum tour-guide robots (Burgard et al., 1998a, 2000; Thrun et al., 1999) in theDeutshes Museum Bonn and the National Museum of Amerian History in Washington,DC, respetively. Experiments desribed in this paper illustrate the ability of our Markovloalization tehnique to deal with approximate models of the environment, suh as ou-pany grid maps and noisy sensors suh as ultrasound sensors, and they demonstrate thatour approah is well-suited to loalize robots in densely rowded environments, suh asmuseums full of people.The paper is organized as follows. The next setion desribes the mathematial frame-work of Markov loalization. We introdue our metri version of Markov loalization inSetion 3. This setion also presents a probabilisti model of proximity sensors and a �lter-ing sheme to deal with highly dynami environments. Thereafter, we desribe experimentalresults illustrating di�erent aspets of our approah. Related work is disussed in Setion 5followed by onluding remarks.2. Markov LoalizationTo introdue the major onepts, we will begin with an intuitive desription of Markovloalization, followed by a mathematial derivation of the algorithm. The reader maynotie that Markov loalization is a speial ase of probabilisti state estimation, appliedto mobile robot loalization (see also Russell & Norvig, 1995; Fox, 1998 and Koenig &Simmons, 1998).For larity of the presentation, we will initially make the restritive assumption that theenvironment is stati. This assumption, alled Markov assumption, is ommonly made inthe robotis literature. It postulates that the robot's loation is the only state in the envi-ronment whih systematially a�ets sensor readings. The Markov assumption is violatedif robots share the same environment with people. Further below, in Setion 3.3, we willside-step this assumption and present a Markov loalization algorithm that works well evenin highly dynami environments, e.g., museums full of people.2.1 The Basi IdeaMarkov loalization addresses the problem of state estimation from sensor data. Markovloalization is a probabilisti algorithm: Instead of maintaining a single hypothesis as to393
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Fig. 2. The basi idea of Markov loalization: A mobile robot during global loalization.where in the world a robot might be, Markov loalization maintains a probability distributionover the spae of all suh hypotheses. The probabilisti representation allows it to weighthese di�erent hypotheses in a mathematially sound way.Before we delve into mathematial detail, let us illustrate the basi onepts with asimple example. Consider the environment depited in Figure 2. For the sake of simpliity,let us assume that the spae of robot positions is one-dimensional, that is, the robot anonly move horizontally (it may not rotate). Now suppose the robot is plaed somewhere inthis environment, but it is not told its loation. Markov loalization represents this stateof unertainty by a uniform distribution over all positions, as shown by the graph in the�rst diagram in Figure 2. Now let us assume the robot queries its sensors and �nds outthat it is next to a door. Markov loalization modi�es the belief by raising the probabilityfor plaes next to doors, and lowering it anywhere else. This is illustrated in the seonddiagram in Figure 2. Notie that the resulting belief is multi-modal, reeting the fat thatthe available information is insuÆient for global loalization. Notie also that plaes notnext to a door still possess non-zero probability. This is beause sensor readings are noisy,and a single sight of a door is typially insuÆient to exlude the possibility of not beingnext to a door.Now let us assume the robot moves a meter forward. Markov loalization inorporatesthis information by shifting the belief distribution aordingly, as visualized in the thirddiagram in Figure 2. To aount for the inherent noise in robot motion, whih inevitablyleads to a loss of information, the new belief is smoother (and less ertain) than the previousone. Finally, let us assume the robot senses a seond time, and again it �nds itself next to adoor. Now this observation is multiplied into the urrent (non-uniform) belief, whih leadsto the �nal belief shown at the last diagram in Figure 2. At this point in time, most of theprobability is entered around a single loation. The robot is now quite ertain about itsposition. 394
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Markov Loalization for Mobile Robots in Dynami Environments2.2 Basi NotationTo make this more formal, let us denote the position (or: loation) of a mobile robot by athree-dimensional variable l = hx; y; �i, omprising its x-y oordinates (in some Cartesianoordinate system) and its heading diretion �. Let lt denote the robot's true loation attime t, and Lt denote the orresponding random variable. Throughout this paper, we willuse the terms position and loation interhangeably.Typially, the robot does not know its exat position. Instead, it arries a belief asto where it might be. Let Bel(Lt) denote the robot's position belief at time t. Bel(Lt)is a probability distribution over the spae of positions. For example, Bel(Lt = l) is theprobability (density) that the robot assigns to the possibility that its loation at time t isl. The belief is updated in response to two di�erent types of events: The arrival of a mea-surement through the robot's environment sensors (e.g., a amera image, a sonar san), andthe arrival of an odometry reading (e.g., wheel revolution ount). Let us denote environ-ment sensor measurements by s and odometry measurements by a, and the orrespondingrandom variables by S and A, respetively.The robot pereives a stream of measurements, sensor measurements s and odometryreadings a. Let d = fd0; d1; : : : ; dT g (1)denote the stream of measurements, where eah dt (with 0 � t � T ) either is a sensormeasurement or an odometry reading. The variable t indexes the data, and T is the mostreently olleted data item (one might think of t as \time"). The set d, whih omprisesall available sensor data, will be referred to as the data.2.3 Reursive LoalizationMarkov loalization estimates the posterior distribution over LT onditioned on all availabledata, that is P (LT = l j d) = P (LT = l j d0; : : : ; dT ): (2)Before deriving inremental update equations for this posterior, let us briey make expliitthe key assumption underlying our derivation, alled the Markov assumption. The Markovassumption, sometimes referred to as stati world assumption, spei�es that if one knowsthe robot's loation lt, future measurements are independent of past ones (and vie versa):P (dt+1; dt+2; : : : j Lt = l; d0; : : : ; dt) = P (dt+1; dt+2; : : : j Lt = l) 8t (3)In other words, we assume that the robot's loation is the only state in the environment, andknowing it is all one needs to know about the past to predit future data. This assumptionis learly inaurate if the environment ontains moving (and measurable) objets otherthan the robot itself. Further below, in Setion 3.3, we will extend the basi paradigm tonon-Markovian environments, e�etively devising a loalization algorithm that works wellin a broad range of dynami environments. For now, however, we will adhere to the Markovassumption, to failitate the derivation of the basi algorithm.395
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Fox, Burgard & ThrunWhen omputing P (LT = l j d), we distinguish two ases, depending on whether themost reent data item dT is a sensor measurement or an odometry reading.Case 1: The most reent data item is a sensor measurement dT = sT .Here P (LT = l j d) = P (LT = l j d0; : : : ; dT�1; sT ): (4)Bayes rule suggests that this term an be transformed toP (sT j d0; : : : ; dT�1; LT = l) P (LT = l j d0; : : : ; dT�1)P (sT j d0; : : : ; dT�1) ; (5)whih, beause of our Markov assumption, an be simpli�ed to:P (sT j LT = l) P (LT = l j d0; : : : ; dT�1)P (sT j d0; : : : ; dT�1) : (6)We also observe that the denominator an be replaed by a onstant �T , sine it does notdepend on LT . Thus, we haveP (LT = l j d) = �T P (sT j LT = l) P (LT = l j d0; : : : ; dT�1): (7)The reader may notie the inremental nature of Equation (7): If we writeBel(LT = l) = P (LT = l j d0; : : : ; dT ); (8)to denote the robot's belief Equation (7) beomesBel(LT = l) = �T P (sT j l) Bel(LT�1 = l): (9)In this equation we replaed the term P (sT j LT = l) by P (sT j l) based on the assumptionthat it is independent of the time.Case 2: The most reent data item is an odometry reading: dT = aT .Here we ompute P (LT = l j d) using the Theorem of Total Probability:P (LT = l j d) = Z P (LT = l j d; LT�1 = l0) P (LT�1 = l0 j d) dl0: (10)Consider the �rst term on the right-hand side. Our Markov assumption suggests thatP (LT = l j d; LT�1 = l0) = P (LT = l j d0; : : : ; dT�1; aT ; LT�1 = l0) (11)= P (LT = l j aT ; LT�1 = l0) (12)The seond term on the right-hand side of Equation (10) an also be simpli�ed by observingthat aT does not arry any information about the position LT�1:P (LT�1 = l0 j d) = P (LT�1 = l0 j d0; : : : ; dT�1; aT ) (13)= P (LT�1 = l0 j d0; : : : ; dT�1) (14)396
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Markov Loalization for Mobile Robots in Dynami EnvironmentsSubstituting 12 and 14 bak into Equation (10) gives us the desired resultP (LT = l j d) = Z P (LT = l j aT ; LT�1 = l0) P (LT�1 = l0 j d0; : : : ; dT�1) dl0: (15)Notie that Equation (15) is, too, of an inremental form. With our de�nition of beliefabove, we have Bel(LT = l) = Z P (l j aT ; l0) Bel(LT�1 = l0) dl0: (16)Please note that we used P (l j aT ; l0) instead of P (LT = l j aT ; LT�1 = l0) sine we assumethat it does not hange over time.2.4 The Markov Loalization AlgorithmUpdate Equations (9) and (16) form the ore of the Markov loalization algorithm. The fullalgorithm is shown in Table 1. Following Basye et al. (1992) and Russell & Norvig (1995),we denote P (l j a; l0) as the robot's motion model, sine it models how motion e�et therobot's position. The onditional probability P (s j l) is alled pereptual model, beause itmodels the outome of the robot's sensors.In the Markov loalization algorithm P (L0 = l), whih initializes the belief Bel(L0),reets the prior knowledge about the starting position of the robot. This distributionan be initialized arbitrarily, but in pratie two ases prevail: If the position of the robotrelative to its map is entirely unknown, P (L0) is usually uniformly distributed. If the initialposition of the robot is approximately known, then P (L0) is typially a narrow Gaussiandistribution entered at the robot's position.2.5 Implementations of Markov LoalizationThe reader may notie that the priniple of Markov loalization leaves open1. how the robot's belief Bel(L) is represented and2. how the onditional probabilities P (l j a; l0) and P (s j l) are omputed.Aordingly, existing approahes to Markov loalization mainly di�er in the representationof the state spae and the omputation of the pereptual model. In this setion we willbriey disuss di�erent implementations of Markov loalization fousing on these two topis(see Setion 5 for a more detailed disussion of related work).1. State Spae Representations: A very ommon approah for the representation ofthe robots belief Bel(L) is based on Kalman �ltering (Kalman, 1960; Smith et al.,1990) whih rests on the restritive assumption that the position of the robot an bemodeled by a unimodal Gaussian distribution. Existing implementations (Leonard& Durrant-Whyte, 1992; Shiele & Crowley, 1994; Gutmann & Shlegel, 1996; Ar-ras & Vestli, 1998) have proven to be robust and aurate for keeping trak of therobot's position. Beause of the restritive assumption of a Gaussian distribution thesetehniques lak the ability to represent situations in whih the position of the robot397
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Fox, Burgard & Thrun
for eah loation l do /* initialize the belief */Bel(L0 = l)  � P (L0 = l) (17)end forforever doif new sensory input sT is reeived do�T  � 0for eah loation l do /* apply the pereption model */dBel(LT = l)  � P (sT j l) �Bel(LT�1 = l) (18)�T  � �T + dBel(LT = l) (19)end forfor eah loation l do /* normalize the belief */Bel(LT = l)  � �T�1 �dBel(LT = l) (20)end forend ifif an odometry reading aT is reeived dofor eah loation l do /* apply the motion model */Bel(LT = l)  � Z P (l j l0; aT ) �Bel(LT�1 = l0) dl0 (21)end forend ifend forever Tab. 1. The Markov loalization algorithmmaintains multiple, distint beliefs (.f. 2). As a result, loalization approahes usingKalman �lters typially require that the starting position of the robot is known andare not able to re-loalize the robot in the ase of loalization failures. Additionally,Kalman �lters rely on sensor models that generate estimates with Gaussian uner-tainty. This assumption, unfortunately, is not met in all situations (see for exampleDellaert et al. 1999). 398
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Markov Loalization for Mobile Robots in Dynami EnvironmentsTo overome these limitations, di�erent approahes have used inreasingly rihershemes to represent unertainty in the robot's position, moving beyond the Gaussiandensity assumption inherent in the vanilla Kalman �lter. Nourbakhsh et al. (1995),Simmons & Koenig (1995), and Kaelbling et al. (1996) use Markov loalization forlandmark-based orridor navigation and the state spae is organized aording to theoarse, topologial struture of the environment and with generally only four possibleorientations of the robot. These approahes an, in priniple, solve the problem ofglobal loalization. However, due to the oarse resolution of the state representation,the auray of the position estimates is limited. Topologial approahes typially giveonly a rough sense as to where the robot is. Furthermore, these tehniques requirethat the environment satis�es an orthogonality assumption and that there are ertainlandmarks or abstrat features that an be extrated from the sensor data. Theseassumptions make it diÆult to apply the topologial approahes in unstruturedenvironments.2. Sensor Models: In addition to the di�erent representations of the state spae variouspereption models have been developed for di�erent types of sensors (see for exampleMorave, 1988; Kortenkamp & Weymouth, 1994; Simmons & Koenig, 1995; Burgardet al., 1996; Dellaert et al., 1999; and Konolige, 1999). These sensor models di�erin the way how they ompute the probability of the urrent measurement. Whereastopologial approahes suh as (Kortenkamp & Weymouth, 1994; Simmons & Koenig,1995; Kaelbling et al., 1996) �rst extrat landmark information out of a sensor san,the approahes in (Morave, 1988; Burgard et al., 1996; Dellaert et al., 1999; Konolige,1999) operate on the raw sensor measurements. The tehniques for proximity sensorsdesribed in (Morave, 1988; Burgard et al., 1996; Konolige, 1999) mainly di�er intheir eÆieny and how they model the harateristis of the sensors and the map ofthe environment.In order to ombine the strengths of the previous representations, our approah relies ona �ne and less restritive representation of the state spae (Burgard et al., 1996, 1998b;Fox, 1998). Here the robot's belief is approximated by a �ne-grained, regularly spaed grid,where the spatial resolution is usually between 10 and 40 m and the angular resolution isusually 2 or 5 degrees. The advantage of this approah ompared to the Kalman-�lter basedtehniques is its ability to represent multi-modal distributions, a prerequisite for globalloalization from srath. In ontrast to the topologial approahes to Markov loalization,our approah allows aurate position estimates in a muh broader range of environments,inluding environments that might not even possess identi�able landmarks. Sine it doesnot depend on abstrat features, it an inorporate raw sensor data into the robot's belief.And it typially yields results that are an order of magnitude more aurate. An obviousshortoming of the grid-based representation, however, is the size of the state spae thathas to be maintained. Setion 3.4 addresses this issue diretly by introduing tehniquesthat make it possible to update extremely large grids in real-time.399
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(a) (b)Fig. 3. Typial \banana-shaped" distributions resulting from di�erent motion ations.3. Metri Markov Loalization for Dynami EnvironmentsIn this setion we will desribe our metri variant of Markov loalization. This inludesappropriate motion and sensor models. We also desribe a �ltering tehnique whih isdesigned to overome the assumption of a stati world model generally made in Markovloalization and allows to loalize a mobile robot even in densely rowded environments.We then desribe our �ne-grained grid-based representation of the state spae and presenttehniques to eÆiently update even large state spaes.3.1 The Ation ModelTo update the belief when the robot moves, we have to speify the ation model P (l j l0; at).Based on the assumption of normally distributed errors in translation and rotation, weuse a mixture of two independent, zero-entered Gaussian distributions whose tails are uto� (Burgard et al., 1996). The varianes of these distributions are proportional to the lengthof the measured motion.Figure 3 illustrates the resulting densities for two example paths if the robot's beliefstarts with a Dira distribution. Both distributions are three-dimensional (in hx; y; �i-spae)and Figure 3 shows their 2D projetions into hx; yi-spae.3.2 The Pereption Model for Proximity SensorsAs mentioned above, the likelihood P (s j l) that a sensor reading s is measured at po-sition l has to be omputed for all positions l in eah update of the Markov loalizationalgorithm (see Table 1). Therefore, it is ruial for on-line position estimation that thisquantity an be omputed very eÆiently. Morave (1988) proposed a method to omputea generally non-Gaussian probability density funtion P (s j l) over a disrete set of possibledistanes measured by an ultrasound sensor at loation l. In a �rst implementation of ourapproah (Burgard et al., 1996) we used a similar method, whih unfortunately turned outto be omputationally too expensive for loalization in real-time.To overome this disadvantage, we developed a sensor-model whih allows to omputeP (s j l) solely based on the distane ol to the losest obstale in the map along the diretionof the sensor. This distane an be omputed by ray-traing in oupany grid maps or400
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Fox, Burgard & Thruna non-zero probability that the sensor is reeted by an obstale not represented in theworld model. Assuming that these objets are equally distributed in the environment,the probability Pu(di) of deteting an unknown obstale at distane di is independentof the loation of the robot and an be modeled by a geometri distribution. Thisdistribution results from the following observation. A distane di is measured if thesensor is not reeted by an obstale at a shorter distane dj<i and is reeted atdistane di. The resulting probability isPu(di) = ( 0 i = 0r(1�Pj<i Pu(dj)) otherwise: (23)In this equation the onstant r is the probability that the sensor is reeted by anunknown obstale at any range given by the disretization.A typial distribution for sonar and laser measurements is depited in Figure 4(b). Inthis example, the relatively large probability of measuring 500m is due to the fatthat the maximum range of the proximity sensors is set to 500m. Thus, this distanerepresents the probability of measuring at least 500m.Obviously, only one of these two ases an our at a ertain point in time, i.e., thesensor beam is either reeted by a known or an unknown objet. Thus, P (di j l) is aa mixture of the two distributions Pm and Pu. To determine the ombined probabilityP (di j l) of measuring a distane di if the robot is at loation l we onsider the followingtwo situations: A distane di is measured, ifa.) the sensor beam is1.) not reeted by an unknown obstale before reahing distane dia1 = 1�Xj<i Pu(dj); (24)2.) and reeted by the known obstale at distane dia2 = d Pm(di j l) (25)b.) OR the beam is1.) reeted neither by an unknown obstale nor by the known obstale beforereahing distane di b1 = 1�Xj<i P (dj j l) (26)2.) and reeted by an unknown obstale at distane dib2 = r: (27)402
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(b)Fig. 5. Measured and approximated probabilities of (a) sonar and (b) laser measurements giventhe distane ol to the losest obstale along the sensing diretion.The parameter d in Equation (25) denotes the probability that the sensor detets the losestobstale in the map. These onsiderations for the ombined probability are summarized inEquation (28). By double negation and insertion of the Equations (24) to (27), we �nallyget Equation (31).P (di j l) = p� (a1 ^ a2) _ (b1 ^ b2) � (28)= :p� :(a1 ^ a2) ^ :(b1 ^ b2) � (29)= 1� �[1� P (a1a2)℄ � [1� P (b1b2)℄� (30)= 1� �1� (1�Xj<i Pu(dj)) d Pm(di j l))) � (1� (1�Xj<i P (dj)) r� (31)To obtain the probability of measuring dn, the maximal range of the sensor, we exploit thefollowing equivalene: The probability of measuring a distane larger than or equal to themaximal sensor range is equivalent to the probability of not measuring a distane shorterthan dn. In our inremental sheme, this probability an easily be determined:P (dn j l) = 1�Xj<nP (dj j l) (32)To summarize, the probability of sensor measurements is omputed inrementally for thedi�erent distanes starting at distane d1 = 0m. For eah distane we onsider the prob-ability that the sensor beam reahes the orresponding distane and is reeted either bythe losest obstale in the map (along the sensor beam), or by an unknown obstale.In order to adjust the parameters �, r and d of our pereption model we olletedeleven million data pairs onsisting of the expeted distane ol and the measured distanedi during the typial operation of the robot. From these data we were able to estimate theprobability of measuring a ertain distane di if the distane ol to the losest obstale inthe map along the sensing diretion is given. The dotted line in Figure 5(a) depits thisprobability for sonar measurements if the distane ol to the next obstale is 230m. Again,the high probability of measuring 500m is due to the fat that this distane representsthe probability of measuring at least 500m. The solid line in the �gure represents thedistribution obtained by adapting the parameters of our sensor model so as to best �t the403
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(d)Fig. 6. Measured and approximated probability of sonar (a,b) and laser (,d) measurements, respe-tively. Eah table ontains the probabilities of distane measurements given the expeted distaneol extrated from a map of the environment.measured data. The orresponding measured and approximated probabilities for the lasersensor are plotted in Figure 5(b).The observed densities for all possible distanes ol to an obstale for ultrasound sensorsand laser range-�nder are depited in Figure 6(a) and Figure 6(), respetively. The approx-imated densities are shown in Figure 6(b) and Figure 6(d). In all �gures, the distane ol islabeled \expeted distane". The similarity between the measured and the approximateddistributions shows that our sensor model yields a good approximation of the data.Please note that there are further well-known types of sensor noise whih are not ex-pliitly represented in our sensor model. Among them are speular reetions or ross-talkwhih are often regarded as serious soures of noise in the ontext of ultra-sound sensors.However, these soures of sensor noise are modeled impliitly by the geometri distributionresulting from unknown obstales.3.3 Filtering Tehniques for Dynami EnvironmentsMarkov loalization has been shown to be robust to oasional hanges of an environmentsuh as opened / losed doors or people walking by. Unfortunately, it fails to loalize arobot if too many aspets of the environment are not overed by the world model. Thisis the ase, for example, in densely rowded environments, where groups of people overthe robots sensors and thus lead to many unexpeted measurements. The mobile robotsRhino and Minerva, whih were deployed as interative museum tour-guides (Burgard et al.,1998a, 2000; Thrun et al., 1999), were permanently faed with suh a situation. Figure 7404
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RHINO

(a) (b)Fig. 7. Rhino surrounded by visitors in the Deutshes Museum Bonn.

(a) (b)Fig. 8. Typial laser sans obtained when Rhino is surrounded by visitors.shows two ases in whih the robot Rhino is surrounded by many visitors while giving atour in the Deutshes Museum Bonn, Germany.The reason why Markov loalization fails in suh situations is the violation of theMarkovassumption, an independene assumption on whih virtually all loalization tehniques arebased. As disussed in Setion 2.3, this assumption states that the sensor measurementsobserved at time t are independent of all other measurements, given that the urrent stateLt of the world is known. In the ase of loalization in densely populated environments,this independene assumption is learly violated when using a stati model of the world.To illustrate this point, Figure 8 depits two typial laser sans obtained during themuseum projets (maximal range measurements are omitted). The �gure also shows theobstales ontained in the map. Obviously, the readings are, to a large extent, orrupted,sine people in the museum are not represented in the stati world model. The di�erentshading of the beams indiates the two lasses they belong to: the blak lines orrespondto the stati obstales in the map and are independent of eah other if the position of therobot is known. The grey-shaded lines are beams reeted by visitors in the Museum. Thesesensor beams annot be predited by the world model and therefore are not independentof eah other. Sine the viinity of people usually inreases the robot's belief of being loseto modeled obstales, the robot quikly loses trak of its position when inorporating all405
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Fox, Burgard & Thrunsensor measurements. To reestablish the independene of sensor measurements we ouldinlude the position of the robot and the position of people into the state variable L.Unfortunately, this is infeasible sine the omputational omplexity of state estimationinreases exponentially in the number of dependent state variables to be estimated.A losely related solution to this problem ould be to adapt the map aording to thehanges of the environment. Tehniques for onurrent map-building and loalization suhas (Lu & Milios, 1997a; Gutmann & Shlegel, 1996; Shatkey & Kaelbling, 1997; Thrun etal., 1998b), however, also assume that the environment is almost stati and therefore areunable to deal with suh environments. Another approah would be to adapt the pereptionmodel to orretly reet suh situations. Note that our pereptual model already assignsa ertain probability to events where the sensor beam is reeted by an unknown obstale.Unfortunately, suh approahes are only apable to model suh noise on average. While suhapproahes turn out to work reliably with oasional sensor blokage, they are not suÆientin situations where more than �fty perent of the sensor measurements are orrupted. Ourloalization system therefore inludes �lters whih are designed to detet whether a ertainsensor reading is orrupted or not. Compared to a modi�ation of the stati sensor modeldesribed above, these �lters have the advantage that they do not average over all possiblesituations and that their deision is based on the urrent belief of the robot.The �lters are designed to selet those readings of a omplete san whih do not omefrom objets ontained in the map. In this setion we introdue two di�erent kinds of �lters.The �rst one is alled entropy �lter. Sine it �lters a reading based solely on its e�et onthe belief Bel(L), it an be applied to arbitrary sensors. The seond �lter is the distane�lter whih selets the readings aording to how muh shorter they are than the expetedvalue. It therefore is espeially designed for proximity sensors.3.3.1 The Entropy FilterThe entropy H(L) of the belief over L is de�ned asH(L) = �Xl Bel(L = l) logBel(L = l) (33)and is a measure of unertainty about the outome of the random variable L (Cover &Thomas, 1991). The higher the entropy, the higher the robot's unertainty as to where itis. The entropy �lter measures the relative hange of entropy upon inorporating a sensorreading into the belief Bel(L). More spei�ally, let s denote the measurement of a sensor(in our ase a single range measurement). The hange of the entropy of Bel(L) given s isde�ned as: �H(L j s) := H(L j s)�H(L) (34)The term H(L j s) is the entropy of the belief Bel(L) after inorporating the sensor mea-surement s (see Equations (18) { (20)). While a positive hange of entropy indiates thatafter inorporating s, the robot is less ertain about its position, a negative hange indiatesan inrease in ertainty. The seletion sheme of the entropy �lter is to exlude all sensormeasurements s with �H(L j s) < 0. In other words, it only uses those sensor readingson�rming the robot's urrent belief. 406
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(0; 0; 0)Fig. 10. Grid-based representation of the state spaeIn pratie, however, we are interested in the probability Pshort(di) that di is shorterthan expeted, given the omplete urrent belief of the robot. Thus, we have to averageover all possible positions of the robot:Pshort(di) = Xl Pshort(di j l)Bel(L = l) (36)Given the distribution Pshort(di), we now an implement the distane �lter by exluding allsensor measurements di with Pshort(di) > . Whereas the entropy �lter �lters measurementsaording to their e�et on the belief state of the robot the distane �lter selets measure-ments solely based on their value and regardless of their e�et on the robot's ertainty.It should be noted that Fox (1998) additionally developed a blokage �lter for proximitysensors, whih is based on a probabilisti desription of situations in whih a sensor isbloked by an unknown obstale. We omit this �lter here sine its derivation is quite omplexand the resulting �lter is not signi�antly di�erent from the distane �lter desribed here.3.4 Grid-based Representation of the State SpaeWe will now return to the issue of how to represent and ompute the belief distributionof the robot eÆiently, desribing what one might think of as the \nut and bolts" of grid-based Markov loalization. Reall that to obtain aurate metri position estimates, ourapproah to Markov loalization uses a �ne-grained disretization of the state spae. HereL is represented by a three-dimensional, regularly spaed grid, where the spatial resolutionis usually between 10m and 40m and the angular resolution is usually 2 or 5 degrees.Figure 10 illustrates the struture of a position probability grid. Eah layer of suh a gridorresponds to all possible poses of the robot with the same orientation.While suh a �ne-grained approximation makes it possible to estimate the robot's po-sition with high auray, an obvious disadvantage of suh a �ne-grained disretization lies408
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Markov Loalization for Mobile Robots in Dynami Environmentsin the huge state spae whih has to be maintained. For a mid-size environment of size30 � 30m2, an angular grid resolution of 2Æ, and a ell size of 15 � 15m2 the state spaeonsists of 7; 200; 000 states. The basi Markov loalization algorithm updates eah of thesestates for eah sensory input and eah atomi movement of the robot. Current omputerspeed, thus, makes it impossible to update matries of this size in real-time.To update suh state spaes eÆiently, we have developed two tehniques, whih aredesribed in the remainder of this setion. The �rst method, introdued in Setion 3.4.1,pre-omputes the sensor model. It allows us to determine the likelihood P (s j l) of sensormeasurements by two look-up operations|instead of expensive ray traing operations. Theseond optimization, desribed in Setion 3.4.2, is a seletive update strategy. This strategyfouses the omputation, by only updating the relevant part of the state spae. Based onthese two tehniques, grid-based Markov loalization an be applied on-line to estimate theposition of a mobile robot during its operation, using a low-ost PC.3.4.1 Pre-Computation of the Sensor ModelAs desribed in Setion 3.2, the pereption model P (s j l) for proximity sensors only dependson the distane ol to the losest obstale in the map along the sensor beam. Based on theassumption that the map of the environment is stati, our approah pre-omputes and storesthese distanes ol for eah possible robot loation l in the environment. Following our sensormodel, we use a disretization d1; : : : ; dn of the possible distanes ol. This disretizationis exatly the same for the expeted and the measured distanes. We then store for eahloation l only the index of the expeted distane ol in a three-dimensional table. Pleasenote that this table only needs one byte per value if 256 di�erent values for the disretizationof ol are used. The probability P (di j ol) of measuring a distane di if the losest obstaleis at distane ol (see Figure 6) an also be pre-omputed and stored in a two-dimensionallookup-table.As a result, the probability P (s j l) of measuring s given a loation l an quikly beomputed by two nested lookups. The �rst look-up retrieves the distane ol to the losestobstale in the sensing diretion given the robot is at loation l. The seond lookup is thenused to get the probability P (s j ol). The eÆient omputation based on table look-upsenabled our implementation to quikly inorporate even laser-range sans that onsist ofup to 180 values in the overall belief state of the robot. In our experiments, the use ofthe look-up tables led to a speed-up-fator of 10, when ompared to a omputation of thedistane to the losest obstale at run-time.3.4.2 Seletive UpdateThe seletive update sheme is based on the observation that during global loalization,the ertainty of the position estimation permanently inreases and the density quikly on-entrates on the grid ells representing the true position of the robot. The probability ofthe other grid ells dereases during loalization and the key idea of our optimization is toexlude unlikely ells from being updated.For this purpose, we introdue a threshold3 " and update only those grid ells l withBel(Lt = l) > ". To allow for suh a seletive update while still maintaining a density over3. In our urrent implementation " is set to 1% of the a priori position probability.409
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Fox, Burgard & Thrunthe entire state spae, we approximate P (st j l) for ells with Bel(Lt = l) � " by the apriori probability of measuring st. This quantity, whih we all eP (st), is determined byaveraging over all possible loations of the robot:eP (st) =Xl P (st j l) P (l) (37)Please note that eP (st) is independent of the urrent belief state of the robot and anbe determined beforehand. The inremental update rule for a new sensor measurement stis hanged as follows (ompare Equation (9)):Bel(Lt = l)  � ( �t � P (st j l) � Bel(Lt�1 = l) if Bel(Lt�1 = l) > "�t � ~P (st) �Bel(Lt�1 = l) otherwise (38)By multiplying eP (st) into the normalization fator �t, we an rewrite this equation asBel(Lt = l)  � 8<: ~�t � P (stjl)eP (st) �Bel(Lt�1 = l) if Bel(Lt�1 = l) > "~�t � Bel(Lt�1 = l) otherwise (39)where ~�t = �t � eP (st).The key advantage of the seletive update sheme given in Equation (39) is that all ellswith Bel(Lt�1 = l) � " are updated with the same value ~�t. In order to obtain smoothtransitions between global loalization and position traking and to fous the omputationon the important regions of the state spae L, for example, in the ase of ambiguities we usea partitioning of the state spae. Suppose the state spae L is partitioned into n segmentsor parts �1; : : : ; �n. A segment �i is alled ative at time t if it ontains loations with prob-ability above the threshold "; otherwise we all suh a part passive beause the probabilitiesof all ells are below the threshold. Obviously, we an keep trak of the individual proba-bilities within a passive part �i by aumulating the normalization fators ~�t into a value�i. Whenever a segment �i beomes passive, i.e. the probabilities of all loations within�i no longer exeed ", the normalizer �i(t) is initialized to 1 and subsequently updated asfollows: �i(t + 1) = ~�t � �i(t). As soon as a part beomes ative again, we an restore theprobabilities of the individual grid ells by multiplying the probabilities of eah ell with theaumulated normalizer �i(t). By keeping trak of the robot motion sine a part beamepassive, it suÆes to inorporate the aumulated motion whenever the part beomes ativeagain. In order to eÆiently detet whether a passive part has to be ativated again, westore the maximal probability Pmaxi of all ells in the part at the time it beomes passive.Whenever Pmaxi � �i(t) exeeds ", the part �i is ativated again beause it ontains at leastone position with probability above the threshold. In our urrent implementation we parti-tion the state spae L suh that eah part �i onsists of all loations with equal orientationrelative to the robot's start loation.To illustrate the e�et of this seletive update sheme, let us ompare the update ofative and passive ells on inoming sensor data. Aording to Equation (39), the di�erenelies in the ratio P (st j l)= ~P (st). An example of this ratio for our model of proximity sensorsis depited in Figure 11 (here, we replaed st by a proximity measurement di). In thebeginning of the loalization proess, all ells are ative and updated aording to the ratio410
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Fig. 11. Ratio P (dijl)~P (di) for sonar and laser measurements for expeted distane ol of 230m.depited in Figure 11. The measured and expeted distanes for ells that do not representthe true loation of the robot usually deviate signi�antly. Thus, the probabilities of theseells quikly fall below the threshold ".Now the e�et of the seletive update sheme beomes obvious: Those parts of the statespae that do not align well with the orientation of the environment, quikly beome passiveas the robot loalizes itself. Consequently, only a small fration of the state spae has tobe updated as soon as the robot has orretly determined its position. If, however, theposition of the robot is lost, then the likelihood ratios for the distanes measured at theative loations beome smaller than one on average. Thus the probabilities of the ativeloations derease while the normalizers �i of the passive parts inrease until these segmentsare ativated again. One the true position of the robot is among the ative loations, therobot is able to re-establish the orret belief.In extensive experimental tests we did not observe evidene that the seletive updatesheme has a notiably negative impat on the robot's behavior. In ontrast, it turnedout to be highly e�etive, sine in pratie only a small fration (generally less than 5%)of the state spae has to be updated one the position of the robot has been determinedorretly, and the probabilities of the ative loations generally sum up to at least 0.99.Thus, the seletive update sheme automatially adapts the omputation time required toupdate the belief to the ertainty of the robot. This way, our system is able to eÆientlytrak the position of a robot one its position has been determined. Additionally, Markovloalization keeps the ability to detet loalization failures and to reloalize the robot. Theonly disadvantage lies in the �xed representation of the grid whih has the undesirablee�et that the memory requirement in our urrent implementation stays onstant even ifonly a minor part of the state spae is updated. In this ontext we would like to mentionthat reently promising tehniques have been presented to overome this disadvantage byapplying alternative and dynami representations of the state spae (Burgard et al., 1998b;Fox et al., 1999).4. Experimental ResultsOur metri Markov loalization tehnique, inluding both sensor �lters, has been imple-mented and evaluated extensively in various environments. In this setion we present some411
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Fox, Burgard & Thrunof the experiments arried out with the mobile robots Rhino and Minerva (see Figure 1).Rhino has a ring of 24 ultrasound sensors eah with an opening angle of 15 degrees. Both,Rhino and Minerva are equipped with two laser range-�nders overing a 360 degrees �eldof view.The �rst set of experiments demonstrates the robustness of Markov loalization in tworeal-world senarios. In partiular, it systematially evaluates the e�et of the �lteringtehniques on the loalization performane in highly dynami environments. An additionalexperiment illustrates a further advantage of the �ltering tehnique, whih enables a mobilerobot to reliably estimate its position even if only an outline of an oÆe environment isgiven as a map.In further experiments desribed in this setion, we will illustrate the ability of ourMarkov loalization tehnique to globally loalize a mobile robot in approximate worldmodels suh as oupany grid maps, even when using inaurate sensors suh as ultrasoundsensors. Finally, we present experiments analyzing the auray and eÆieny of grid-basedMarkov loalization with respet to the size of the grid ells.The experiments reported here demonstrate that Markov loalization is able to globallyestimate the position of a mobile robot, and to reliably keep trak of it even if only anapproximate model of a possibly dynami environment is given, if the robot has a weakodometry, and if noisy sensors suh as ultrasound sensors are used.4.1 Long-term Experiments in Dynami EnvironmentsFor our mobile robots Rhino and Minerva, whih operated in the Deutshes Museum Bonnand the US-Smithsonian's National Museum of Amerian History, the robustness and re-liability of our Markov loalization system was of utmost importane. Aurate positionestimation was a ruial omponent, as many of the obstales were \invisible" to the robots'sensors (suh as glass ages, metal bars, stairases, and the alike). Given the estimate ofthe robot's position (Fox et al., 1998b) integrated map information into the ollision avoid-ane system in order to prevent the robot from olliding with obstales that ould not bedeteted.Figure 12(a) shows a typial trajetory of the robot Rhino, reorded in the museumin Bonn, along with the map used for loalization. The reader may notie that only theobstales shown in blak were atually used for loalization; the others were either invisibleor ould not be deteted reliably. Rhino used the entropy �lter to identify sensor readingsthat were orrupted by the presene of people. Rhino's loalization module was able to (1)globally loalize the robot in the morning when the robot was swithed on and (2) to reliablyand aurately keep trak of the robot's position. In the entire six-day deployment period, inwhih Rhino traveled over 18km, our approah led only to a single software-related ollision,whih involved an \invisible" obstale and whih was aused by a loalization error thatwas slightly larger than a 30m safety margin.Figure 12(b) shows a 2km long trajetory of the robot Minerva in the National Museumof Amerian History. Minerva used the distane �lter to identify readings reeted byunmodeled objets. This �lter was developed after Rhino's deployment in the museum inBonn, based on an analysis of the loalization failure reported above and in an attempt toprevent similar e�ets in future installations. Based on the distane �lter, Minerva was able412
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Duration: 4.8 hours
Distance: 1540 meters (a) Duration: 1 hour

Distance: 2000 meters (b)Fig. 12. Typial trajetories of (a) Rhino in the Deutshes Museum Bonn and (b) Minerva in theNational Museum of Amerian History.to operate reliably over a period of 13 days. During that time Minerva traveled a total of44km with a maximum speed of 1.63m/se.Unfortunately, the evidene from the museum projets is anedotal. Based on sensordata olleted during Rhino's deployment in the museum in Bonn, we also investigated thee�et of our �lter tehniques more systematially, and under even more extreme onditions.In partiular, we were interested in the loalization resultsa.) when the environment is densely populated (more than 50% of the sensor reading areorrupted), andb.) when the robot su�ers extreme dead-rekoning errors (e.g. indued by a person arry-ing the robot somewhere else). Sine suh ases are rare, we manually inited suherrors into the original data to analyze their e�et.4.1.1 DatasetsDuring the experiments, we used two di�erent datasets. These sets di�er mainly in theamount of sensor noise.a.) The �rst dataset was olleted during 2.0 hours of robot motion, in whih the robottraveled approximately 1,000 meters. This dataset was olleted when the museumwas losed, and the robot guided only remote Internet-visitors through the museum.The robot's top speed was 50m/se. Thus, this dataset was \ideal" in that theenvironment was only sparsely populated, and the robot moved slowly.b.) The seond dataset was reorded during a period of 4.8 hours, during whih Rhinotraveled approximately 1,540 meters. The path of this dataset is shown in Fig-ure 12(a). When olleting this data, the robot operated during peak traÆ hours.It was frequently faed with situations suh as the one illustrated in Figure 7. Therobot's top speed was 80m/se.Both datasets onsist of logs of odometry and laser range-�nder sans, olleted while therobot moved through the museum. Using the time stamps in the logs, all tests have been413
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Time [sec]Fig. 13. Perentage of noisy sensor measurements averaged over time intervals of �ve minutes.onduted in real-time simulation on a SUN-Ultra-Spar 1 (177-MHz). The �rst datasetontained more than 32,000, and the seond dataset more than 73,000 laser sans. Toevaluate the di�erent loalization methods, we generated two referene paths, by averagingover the estimates of nine independent runs for eah �lter on the datasets (with smallrandom noise added to the input data). We veri�ed the orretness of both referene pathsby visual inspetion; hene, they an be taken as \ground truth."Figure 13 shows the estimated perentage of orrupted sensor readings over time for bothdatasets. The dashed line orresponds to the �rst data set, while the solid line illustratesthe orruption of the seond (longer) data set. In the seond dataset, more than half ofall measurements were orrupted for extended durations of time, as estimated by analyzingeah laser reading post-fato as to whether it was signi�antly shorter than the distane tothe next obstale.4.1.2 Traking the Robot's PositionIn our �rst series of experiments, we were interested in omparing the ability of all threeapproahes|plain Markov loalization without �ltering, loalization with the entropy �lter,and loalization with the distane �lter|to keep trak of the robot's position under normalworking onditions. All three approahes traked the robot's position in the empty museumwell (�rst dataset), exhibiting only negligible errors in loalization. The results obtainedfor the seond, more hallenging dataset, however, were quite di�erent. In a nutshell,both �lter-based approahes traked the robot's position aurately, whereas onventionalMarkov loalization failed frequently. Thus, had we used the latter in the museum exhibit,it would inevitably have led to a large number of ollisions and other failures.Filter None Entropy DistanefailuresI [%℄ 1:6 � 0:4 0:9 � 0:4 0:0 � 0:0failuresII [%℄ 26:8 � 2:4 1:1 � 0:3 1:2 � 0:7Table 2: Ability to trak the robot's position.Table 2 summarizes the results obtained for the di�erent approahes in this trakingexperiment. The �rst row of Table 2 provides the perentage of failures for the di�erent414
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Distance at final position:  19 cm
Certainty at final position: 0.003

final position (a) final position

Distance at final position:  1 cm
Certainty at final position: 0.987 (b) Distance at final position:  1 cm

Certainty at final position: 0.998

final position ()Fig. 14. Estimated and real paths of the robot along with endpoints of inorporated sensor mea-surements using (a) no �lter, (b) entropy �lter, and () distane �lter.�lters on the �rst dataset (error values represent 95% on�dene intervals). Position esti-mates were onsidered a \failure" if the estimated loation of the robot deviated from thereferene path by more than 45m for at least 20 seonds. The perentage is measured intime during whih the position was lost, relative to the total time of the dataset.As an be seen here, all three approahes work well, and the distane �lter provides thebest performane. The seond row provides the failures on the seond dataset. While plainMarkov loalization failed in 26.8% of the overall time, both �lter tehniques show almostequal results with a failure of less than 2%. Thus, the two �lter tehniques are robust inhighly dynami environments, plain Markov loalization is prone to fail.To shed light onto the question as to why Markov loalization performs so poorly whenompared to the �lter algorithms, we analyzed the sensor readings that eah method usedduring the loalization task. Figure 14 shows, for a a small fration of the data, the measure-ments inorporated into the robot's belief by the three di�erent approahes. Shown thereare the end points of the sensor measurements used for loalization relative to the positionson the referene path. Obviously, both �lter approahes manage to fous their attention onthe \orret" sensor measurements, whereas plain Markov loalization inorporates massiveamounts of orrupted (misleading) measurements. As also illustrated by Figure 14, both�lter-based approahes produe more aurate results with a higher ertainty in the orretposition.4.1.3 Reovery from Extreme Loalization FailuresWe onjeture that a key advantage of the original Markov loalization tehnique lies in itsability to reover from extreme loalization failures. Re-loalization after a failure is oftenmore diÆult than global loalization from srath, sine the robot starts with a belief thatis entered at a ompletely wrong position. Sine the �ltering tehniques use the urrentbelief to selet the readings that are inorporated, it is not lear that they still maintainthe ability to reover from global loalization failures.To analyze the behavior of the �lters under suh extreme onditions, we arried out aseries of experiments during whih we manually introdued suh failures into the data totest the robustness of these methods in the extreme. More spei�ally, we \tele-ported" therobot at random points in time to other loations. Tehnially, this was done by hangingthe robot's orientation by 180�90 degree and shifting it by 0�100m, without letting therobot know. These perturbations were introdued randomly, with a probability of 0:005 per415
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Fox, Burgard & ThrunFilter None Entropy DistaneDataset Itre [se℄ 237 � 27 1779 � 548 188 � 30failures [%℄ 10:2 � 1:8 45:6 � 7:1 6:8 � 1:6Dataset IItre [se℄ 269 � 60 1310 � 904 235 � 46failures [%℄ 39:5 � 5:1 72:8 � 7:3 7:8 � 1:9Table 3: Summary of reovery experiments.meter of robot motion. Obviously, suh inidents make the robot lose trak of its position.Eah method was tested on 20 di�erently orrupted versions of both datasets. This resultedin a total of more than 50 position failures in eah dataset. For eah of these failures wemeasured the time until the methods re-loalized the robot orretly. Re-Loalization wasassumed to have sueeded if the distane between the estimated position and the referenepath was smaller than 45m for more than 10 seonds.Table 3 provides re-loalization results for the various methods, based on the two dif-ferent datasets. Here tre represents the average time in seonds needed to reover froma loalization error. The results are remarkably di�erent from the results obtained undernormal operational onditions. Both onventional Markov loalization and the tehniqueusing distane �lters are relatively eÆient in reovering from extreme positioning errors inthe �rst dataset, whereas the entropy �lter-based approah is an order of magnitude lesseÆient (see �rst row in Table 3). The unsatisfatory performane of the entropy �lter inthis experiment is due to the fat that it disregards all sensor measurements that do noton�rm the belief of the robot. While this proedure is reasonable when the belief is orret,it prevents the robot from deteting loalization failures. The perentage of time when theposition of the robot was lost in the entire run is given in the seond row of the table. Pleasenote that this perentage inludes both, failures due to manually introdued perturbationsand traking failures. Again, the distane �lter is slightly better than the approah with-out �lter, while the entropy �lter performs poorly. The average times tre to reover fromfailures on the seond dataset are similar to those in the �rst dataset. The bottom row inTable 3 provides the perentage of failures for this more diÆult dataset. Here the distane�lter-based approah performs signi�antly better than both other approahes, sine it isable to quikly reover from loalization failures and to reliably trak the robot's position.The results illustrate that despite the fat that sensor readings are proessed seletively,the distane �lter-based tehnique reovers as eÆiently from extreme loalization errors asthe onventional Markov approah.4.2 Loalization in Inomplete MapsA further advantage of the �ltering tehniques is that Markov loalization does not requirea detailed map of the environment. Instead, it suÆes to provide only an outline whih416
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(a) (b) ()Fig. 15. (a) Outline of the oÆe environment and (b,) examples of �ltered (grey) and inorporated(blak) sensor readings using the distane �lter.
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20m (b)Fig. 16. (a) Oupany grid map of the 1994 AAAI mobile robot ompetition arena. (b) Trajetoryof the robot and ultrasound measurements used to globally loalize the robot in this map.merely inludes the aspets of the world whih are stati. Figure 15(a) shows a ground planof our department building, whih ontains only the walls of the university building. Theomplete map, inluding all movable objets suh as tables and hairs, is shown in Figure 19.The two Figures 15(b) and 15() illustrate how the distane �lter typially behaves whentraking the robot's position in suh a sparse map of the environment. Filtered readingsare shown in grey, and the inorporated sensor readings are shown in blak. Obviously,the �lter fouses on the known aspets of the map and ignores all objets (suh as desks,hairs, doors and tables) whih are not ontained in the outline. Fox (1998) desribes moresystemati experiments supporting our belief that Markov loalization in ombination withthe distane �lter is able to aurately loalize mobile robots even when relying only on anoutline of the environment.4.3 Loalization in Oupany Grid Maps Using SonarThe next experiment desribed here is arried out based on data olleted with the mobilerobot Rhino during the 1994 AAAI mobile robot ompetition (Simmons, 1995). Figure 16(a)shows an oupany grid map (Morave & Elfes, 1985; Morave, 1988) of the environment,onstruted with the tehniques desribed in (Thrun et al., 1998a; Thrun, 1998b). The sizeof the map is 31� 22m2, and the grid resolution is 15m.417



www.manaraa.com

Fox, Burgard & Thrun
Robot position (A)

(a)
Robot position (B)

(b)
Robot position (C)

()Fig. 17. Density plots after inorporating 5, 18, and 24 sonar sans (darker positions are morelikely).
(a) (b)Fig. 18. Odometry information and orreted path of the robot.Figure 16(b) shows a trajetory of the robot along with measurements of the 24 ultra-sound sensors obtained as the robot moved through the ompetition arena. Here we usethis sensor information to globally loalize the robot from srath. The time required toproess this data on a 400MHz Pentium II is 80 seonds, using a position probability gridwith an angular resolution of 3 degrees. Please note that this is exatly the time needed bythe robot to traverse this trajetory; thus, our approah works in real-time. Figure 16(b)also marks positions of the robot after pereiving 5 (A), 18 (B), and 24 (C) sensor sweeps.The belief states during global loalization at these three points in time are illustrated inFigure 17.The �gures show the belief of the robot projeted onto the hx; yi-plane by plotting foreah hx; yi-position the maximum probability over all possible orientations. More likelypositions are darker and for illustration purposes, Figures 17(a) and 17(b) use a logarithmisale in intensity. Figure 17(a) shows the belief state after integrating 5 sensor sweeps (seealso position A in Figure 16(b)). At this point in time, all the robot knows is that it is in oneof the orridors of the environment. After integrating 18 sweeps of the ultrasound sensors,the robot is almost ertain that it is at the end of a orridor (ompare position B in Fig-ures 16(b) and 17(b)). A short time later, after turning left and integrating six more sweepsof the ultrasound ring, the robot has determined its position uniquely. This is representedby the unique peak ontaining 99% of the whole probability mass in Figure 17().Figure 18 illustrates the ability of Markov loalization to orret aumulated dead-rekoning errors by mathing ultrasound data with oupany grid maps. Figure 18(a)shows a typial 240m long trajetory, measured by Rhino's wheel-enoders in the 1994418
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Fig. 19. Path of the robot and referene positionsAAAI mobile robot ompetition arena. Obviously, the rotational error of the odometryquikly inreases. Already after traveling 40m, the aumulated error in the orientation(raw odometry) is about 50 degrees. Figure 18(b) shows the path of the robot estimatedby Markov loalization, whih is signi�antly more orret.4.4 Preision and PerformaneWe will now desribe experiments aimed at haraterizing the preision of position esti-mates. Our experiments also haraterize the time needed for global loalization in relationto the size of the grid ells. Figure 19 shows a path of the robot Rhino in the ComputerSiene Department's building at the University of Bonn. This path inludes 22 referenepositions, where the true position of the robot was determined using the san mathingtehnique presented in (Gutmann & Shlegel, 1996; Lu & Milios, 1994). All data reordedduring this run were split into four disjoint traes of the sensor data. Eah of these di�erenttraes ontained the full length of the path, but only every fourth sensor reading whih wassuÆient to test the loalization performane.Figure 20(a) shows the loalization error averaged over the four runs and all referenepositions. The error was determined for di�erent sizes of grid ells, using a laser range-�nder or ultrasound sensors. These results demonstrate (1) that the average loalizationerror for both sensors is generally below the ell size and (2) that laser range-�nders providea signi�antly higher auray than ultrasound sensors. When using the laser range-�nderat a spatial resolution of 4m, the average positioning error an even be redued to 3.5m.Figure 20(b) shows the average CPU-time needed to globally loalize the robot as afuntion of the size of the grid ells. The values represent the omputation time neededon a 266MHz Pentium II for global loalization on the path between the starting pointand position 1. In this experiment, we used a �xed angular resolution of four degrees.In the ase of 64m ell size, the average loalization time is approximately 2.2 seonds.419
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(b)Fig. 20. (a) Average loalization error and (b) average CPU-time needed for global loalization timeboth for ultrasound sensors and laser range-�nder depending on the grid resolution.Of ourse, the e�etive time needed for global loalization in pratie highly depends onthe struture of the environment and the amount of information gathered on the path ofthe robot. For example, due to the symmetry of the orridor of this oÆe environment,the robot is not able to loalize itself unless it enters a room. The reader may notiethat reently, we developed a deision-theoreti method for atively guiding the robot toplaes whih allow it to resolve ambiguities during global loalization (Fox et al., 1998a;Fox, 1998). Based on this method, the loalization proess beomes more eÆient, espeiallyin oÆe environments with a lot of indistinguishable plaes as, for example, long orridors.The experiments desribed above demonstrate that our metri variant of Markov loal-ization is able to eÆiently estimate the position of a mobile robot in dynami environments.It furthermore an deal with approximate models of the environment suh as oupanygrid maps or rough outline maps. Finally, it is able to eÆiently and aurately estimatethe position of a mobile robot even if ultrasound sensors are used.5. Related WorkMost of the tehniques for mobile robot loalization in the literature belong to the lass ofloal approahes or traking tehniques, whih are designed to ompensate odometri errorourring during navigation. They assume that the initial position of the robot is known(see Borenstein et al. 1996 for a omprehensive overview). For example, Wei� et al. (1994)store angle histograms onstruted out of laser range-�nder sans taken at di�erent loationsin the environment. The position and orientation of the robot are alulated by maximizingthe orrelation between the stored histograms and laser range-sans obtained while therobot moves through the environment. The estimated position, together with the odometryinformation, is then used to predit the position of the robot and to selet the histogramused for the next math. Yamauhi (1996) and Shulz et al. (1999) apply a similar tehnique,but they use hill-limbing to math loal maps built from ultrasound sensors into a globaloupany grid map. As in the approah by Wei� et al. (1994), the loation of the robotis represented by the position yielding the best math. These tehniques, in ontrast toMarkov loalization, do not represent the unertainty of the robot in its urrent belief andtherefore annot deal appropriately with globally ambiguous situations.420
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Markov Loalization for Mobile Robots in Dynami EnvironmentsA popular probabilisti framework for position traking are Kalman �lters (Maybek,1990; Smith et al., 1990), a signal proessing tehnique introdued by Kalman (1960). Asmentioned in Setion 2.4, Kalman �lter-based methods represent their belief of the robot'sposition by a unimodal Gaussian distribution over the three-dimensional state-spae of therobot. The mode of this distribution yields the urrent position of the robot, and thevariane represents the robot's unertainty. Whenever the robot moves, the Gaussian isshifted aording to the distane measured by the robot's odometry. Simultaneously, thevariane of the Gaussian is inreased aording to the model of the robot's odometry. Newsensory input is inorporated into the position estimation by mathing the perepts withthe world model.Existing appliations of Kalman �ltering to position estimation for mobile robots aresimilar in how they model the motion of the robot. They di�er mostly in how they updatethe Gaussian aording to new sensory input. Leonard and Durrant-Whyte (1991) mathbeaons extrated from sonar sans with beaons predited from a geometri map of theenvironment. These beaons onsist of planes, ylinders, and orners. To update the ur-rent estimate of the robot's position, Cox (1991) mathes distanes measured by infraredsensors with a line segment desription of the environment. Shiele and Crowley (1994)ompare di�erent strategies to trak the robot's position based on oupany grid mapsand ultrasoni sensors. They show that mathing loal oupany grid maps with a globalgrid map results in a similar loalization performane as if the mathing is based on fea-tures that are extrated from both maps. Sha�er et al. (1992) ompare the robustness oftwo di�erent mathing tehniques with di�erent soures of noise. They suggest a ombi-nation of map-mathing and feature-based tehniques in order to inherit the bene�ts ofboth. Lu and Milios (1994,1997b) and Gutmann and Shlegel (1996) use a san-mathingtehnique to preisely estimate the position of the robot based on laser range-�nder sansand learned models of the environment. Arras and Vestli (1998) use a similar tehnique toompute the position of the robot with a very high auray. All these variants, however,rest on the assumption that the position of the robot an be represented by a single Gaus-sian distribution. The advantage of Kalman �lter-based tehniques lies in their eÆienyand in the high auray that an be obtained. The restrition to a unimodal Gaussiandistribution, however, is prone to fail if the position of a robot has to be estimated fromsrath, i.e. without knowledge about the starting position of the robot. Furthermore,these tehnique are typially unable to reover from loalization failures. Reently, Jens-felt and Kristensen (1999) introdued an approah based on multiple hypothesis traking,whih allows to model multi-modal probability distributions as they our during globalloalization.Markov loalization, whih has been employed suessfully in several variants (Nour-bakhsh et al., 1995; Simmons & Koenig, 1995; Kaelbling et al., 1996; Burgard et al., 1996;Hertzberg & Kirhner, 1996; Koenig & Simmons, 1998; Oore et al., 1997; Thrun, 1998a),overomes the disadvantage of Kalman �lter based tehniques. The di�erent variants ofthis tehnique an be roughly distinguished by the type of disretization used for the rep-resentation of the state spae. Nourbakhsh et al. (1995), Simmons and Koenig (1995),and Kaelbling et al. (1996) use Markov loalization for landmark-based navigation, and thestate spae is organized aording to the topologial struture of the environment. Herenodes of the topologial graph orrespond to distintive plaes in hallways suh as openings421
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Fox, Burgard & Thrunor juntions and the onnetions between these plaes. Possible observations of the robotare, for example, hallway intersetions. The advantage of these approahes is that they anrepresent ambiguous situations and thus are in priniple able to globally loalize a robot.Furthermore, the oarse disretization of the environment results in relatively small statespaes that an be maintained eÆiently. The topologial representations have the disad-vantage that they provide only oarse information about the robot's position and that theyrely on the de�nition of abstrat features that an be extrated from the sensor information.The approahes typially make strong assumptions about the nature of the environments.Nourbakhsh et al. (1995), Simmons and Koenig (1995), and Kaelbling et al. (1996), forexample, only onsider four possible headings for the robot position assuming that theorridors in the environment are orthogonal to eah other.Our method uses instead a �ne-grained, grid-based disretization of the state spae.The advantage of this approah ompared to the Kalman �lter based tehniques omesfrom the ability to represent more omplex probability distributions. In a reent experi-mental omparison to the tehnique introdued by Lu and Milios (1994) and Gutmann andShlegel (1996), we found that Kalman �lter based traking tehniques provide highly au-rate position estimates but are less robust, sine they lak the ability to globally loalize therobot and to reover from loalization errors (Gutmann et al., 1998). In ontrast to the topo-logial implementations of Markov loalization, our approah provides aurate position es-timates and an be applied even in highly unstrutured environments (Burgard et al., 1998a;Thrun et al., 1999). Using the seletive update sheme, our tehnique is able to eÆientlykeep trak of the robot's position one it has been determined. It also allows the robot toreover from loalization failures.Finally, the vast majority of existing approahes to loalization di�er from ours in thatthey address loalization in stati environments. Therefore, these methods are prone to failin highly dynami environments in whih, for example, large rowds of people surround therobot (Fox et al., 1998). However, dynami approahes have great pratial importane,and many envisioned appliation domains of servie robots involve people and populatedenvironments.6. DisussionIn this paper we presented a metri variant of Markov loalization, as a robust tehniquefor estimating the position of a mobile robot in dynami environments. The key idea ofMarkov loalization is to maintain a probability density over the whole state spae of therobot relative to its environment. This density is updated whenever new sensory input isreeived and whenever the robot moves. Metri Markov loalization represents the statespae using �ne-grained, metri grids. Our approah employs eÆient, seletive updatealgorithms to update the robot's belief in real-time. It uses �ltering to ope with dynamienvironments, making our approah appliable to a wide range of target appliations.In ontrast to previous approahes to Markov loalization, our method uses a �ne-grained disretization of the state spae. This allows us to ompute aurate positionestimates and to inorporate raw sensory input into the belief. As a result, our system anexploit arbitrary features of the environment. Additionally, our approah an be appliedin arbitrary unstrutured environments and does not rely on an orthogonality assumption422
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Markov Loalization for Mobile Robots in Dynami Environmentsor similar assumptions of the existene of ertain landmarks, as most other approahes toMarkov loalization do.The majority of the loalization approahes developed so far assume that the world isstati and that the state of the robot is the only hanging aspet of the world. To be able toloalize a mobile robot even in dynami and densely populated environments, we developeda tehnique for �ltering sensor measurements whih are orrupted due to the presene ofpeople or other objets not ontained in the robot's model of the environment.To eÆiently update the huge state spaes resulting from the grid-based disretization,we developed two di�erent tehniques. First, we use look-up operations to eÆiently om-pute the quantities neessary to update the belief of the robot given new sensory input.Seond, we apply the seletive update sheme whih fouses the omputation on the rel-evant parts of the state spae. As a result, even large belief states an be updated inreal-time.Our tehnique has been implemented and evaluated in several real-world experimentsat di�erent sites. Reently we deployed the mobile robots Rhino in the Deutshes Mu-seum Bonn, Germany, and Minerva in the Smithsonian's National Museum of AmerianHistory, Washington, DC, as interative museum tour-guides. During these deployments,our Markov loalization tehnique reliably estimated the position of the robots over longperiods of time, despite the fat that both robots were permanently surrounded by visitorswhih produed large amounts of false readings for the proximity sensors of the robots.The auray of grid-based Markov loalization turned out to be ruial to avoid even suhobstales that ould not be sensed by the robot's sensors. This has been aomplished byintegrating map information into the ollision avoidane system (Fox et al., 1998b).Despite these enouraging results, several aspets warrant future researh. A key disad-vantage of our urrent implementation of Markov loalization lies in the �xed disretizationof the state spae, whih is always kept in main memory. To sale up to truly large en-vironments, it seems inevitable that one needs variable-resolution representations of thestate spae, suh as as the one suggested in (Burgard et al., 1997; 1998b; Gutmann et al.,1998). Alternatively, one ould use Monte-Carlo based representations of the state spaeas desribed in (Fox et al., 1999). Here, the robot's belief is represented by samples thatonentrate on the most likely parts of the state spae.AknowledgmentThe authors would like to thank the researh group for autonomous intelligent systems atthe University of Bonn for fruitful disussions, useful suggestions and omments, espeiallyDaniel Hennig and Andreas Derr. We would also like to thank the members of CMU'sRobot Learning Lab for many inspiring disussions. Finally, we would like to thank thesta� of the Deutshes Museum Bonn and the National Museum of Amerian History fortheir enthusiasm and their willingness to expose their visitors to one of our mobile robots.This researh is sponsored in part by NSF (CAREER Award IIS-9876136) and DARPAvia TACOM (ontrat number DAAE07-98-C-L032), and Rome Labs (ontrat numberF30602-98-2-0137), whih is gratefully aknowledged. The views and onlusions ontainedin this doument are those of the authors and should not be interpreted as neessarily423
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